Design of a TiO2 nanosheet/nanoparticle gradient film photoanode and its improved performance for dye-sensitized solar cells.
نویسندگان
چکیده
A TiO2 film photoanode with gradient structure in nanosheet/nanoparticle concentration on the fluorine-doped tin oxide glass from substrate to surface was prepared by a screen printing method. The as-prepared dye-sensitized solar cell (DSSC) based on the gradient film electrode exhibited an enhanced photoelectric conversion efficiency of 6.48%, exceeding that of a pure nanoparticle-based DSSC with the same film thickness by a factor of 2.6. The enhanced photovoltaic performance of the gradient film-based DSSC was attributed to the superior light scattering ability of TiO2 nanosheets within the gradient structure, which was beneficial to light harvesting. Furthermore, the TiO2 nanosheets with exposed {001} facets facilitated the electron transport from dye molecules to the conduction band of TiO2 and further to the conductive glass. Meanwhile, the high specific surface area of TiO2 nanosheets helped the adsorption of dye molecules, and the TiO2 nanoparticle underlayer ensured good electronic contact between the TiO2 film and the fluorine-doped tin oxide glass substrate. The electrochemical impedance spectroscopy measurements further confirmed the electron transport differences between DSSCs based on nanosheet/nanoparticle gradient film electrodes and DSSCs based on nanosheet/nanoparticle homogeneous mixtures, pure TiO2 nanoparticles and pure TiO2 nanosheets with the same film thickness.
منابع مشابه
Influence of TiO2 layer thickness as photoanode in Dye Sensitized Solar Cells
Dye-sensitized solar cells (DSSCs) are categorized as some of inexpensive thin-film solar cells. The basis and foundation of these cells is a semiconductor that consists of an electrolyte and a light-sensitive anode. Titanium dioxide (TiO2) is a semiconductor that plays the role of anode and is the main constituent of these cells. In this paper, we have addressed the functionality and performan...
متن کاملFabrication of dye sensitized solar cells with a double layer photoanode
Dye sensitized solar cell was fabricated from a double layer photoanode. First, TiO2 nanoparticles were synthesized by hydrothermal method. These TiO2 NPs were deposited on FTO glasses by electrophoretic deposition method in applied voltage of 5 V and EPD time of 2.5-10 min. Then TiO2 hollow spheres (HSs) were synthesized by sacrificed template method with Carbon Spheres as template and TTIP ...
متن کاملInfluence of nanostructured TiO2 film thickness on photoelectrode structure and performance of flexible Dye- Sensitized Solar Cells
A commercial Ti-Nanoxide was deposited on In-doped SnO2 (ITO) polymer substrates by tape casting technique with different thicknesses (7, 14 and 36μm) to be used as photoelectrode in flexible dye-sensitized solar cells (DSSCs). Ruthenium dye was adsorbed on each TiO2 film for 24 h. The resulting photoelectrodes were used to form flexible DSSCs in combination with...
متن کاملBoosting Photovoltaic Performance of Dye-Sensitized Solar Cells Using Silver Nanoparticle-Decorated N,S-Co-Doped-TiO2 Photoanode
A silver nanoparticle-decorated N,S-co-doped TiO2 nanocomposite was successfully prepared and used as an efficient photoanode in high-performance dye-sensitized solar cells (DSSCs) with N719 dye. The DSSCs assembled with the N,S-TiO2@Ag-modified photoanode demonstrated an enhanced solar-to-electrical energy conversion efficiency of 8.22%, which was better than that of a DSSC photoanode composed...
متن کاملVoltage enhancement in dye-sensitized solar cell using (001)-oriented anatase TiO2 nanosheets
A nanocrystalline TiO2 (anatase) nanosheet exposing mainly the (001) crystal faces was tested as photoanode material in dye-sensitized solar cells. The nanosheets were prepared by hydrothermal growth in HF medium. Good-quality thin films were deposited on F-doped SnO2 support from the TiO2 suspension in ethanolic or aqueous media. The anatase (001) face adsorbs a smaller amount of the used dye ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 4 شماره
صفحات -
تاریخ انتشار 2014